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Abstract

This paper describes the results of molecular dynamics simulations of polyethylene crystal at two temperatures in the absence of periodic

boundary conditions. We report the profiles of the temperature and pressure tensor along two directions in the crystal. We check that the two

different methods (IK) and (MOP) for calculating the pressure tensor give similar profiles, which are constant in the middle of the crystal. In

addition, we compare the data resulted from the pressure profiles with the values obtained from the virial route. The internal structure of the

polyethylene is visualized through the intramolecular and intermolecular radial distribution functions. q 2002 Elsevier Science Ltd. All

rights reserved.
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1. Introduction

A knowledge of the thermodynamic properties of

crystalline structures, solid state, in molecular system

becomes possible using molecular dynamics simulations.

This technique provides us with an atomic description, the

dynamical behaviour and thermodynamic properties of the

system. There have been a significant number of compu-

tational studies of crystal structures using both Monte Carlo

and MD techniques [1–6].

Modelling and simulation of energetic particle–solid

interactions have also been in progress during this last

decade. The interactions of fullerene molecules with silicon

surfaces [7], the ion bombardment of polyethylene [8], the

hydrogen atom interactions with C60 [9] have been

successfully studied using standard molecular dynamics

simulations.

We plan also to study the bombardment of poly-

ethylene crystal by some particles which give rise to

important industrial applications. These calculations will

be made in the scope of plasma physic application.

Indeed, in this research field, there are several new

industrial applications, especially in the plasma–plastic

interaction field, like circuit breaker (PTFE/SF6 inter-

action) or in the electrothermal gun for example [10–12].

So, in a short term, this polyethylene model will be used

to consider the interaction between plasma and an

insulating wall where an incident particle flow will

interact with the latter. The particle flow will induce a

pressure variation inside the polymer which will be

evaluated with the two techniques used in this work.

Before doing so, we wish to explore our MD algorithm

and compute some thermodynamic properties of this crystal.

Our force field differs from those of the previous studies [8,

13,14] and is composed of energetic contributions currently

used in the molecular simulations. In this paper, we check

the thermal and mechanical properties by computing the

temperature and pressure tensors along some directions in

the crystal without periodic boundary conditions. So far we

know, the calculations of the temperature and pressure

profiles have not yet been carried out on a solid structure as

the polyethylene crystal.

In Section 2, we describe the derivation of the

polyethylene crystal force field and the computational

techniques we have employed in our simulations. In Section

3, we calculate the temperature and pressure profiles across

the polyethylene. Finally, in Section 4 we draw the main

conclusions from our work.
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2. Computational method

2.1. United atom model

In the united atom (UA) model, the atom is represented

by a spherical pseudo-atom with interaction site placed in

the position of the carbon nucleus. In this model, each CH3

and CH2 groups are modelled by single Lennard-Jones

interaction sites. Different potentials using UA model have

already provided useful and experimentally relevant

predictions of many aspects of polyethylene [15]. All united

atoms on different chains or separated by more than three

chemical bonds interact through a Lennard-Jones potential

VLJðrijÞ ¼ 4e ij

sij

rij

 !12

2
sij

rij

 !6" #
ð1Þ

where e ij is the energy parameter of the interaction, sij is the

Lennard-Jones core diameter and rij is the distance between

interactions sites i and j: The LJ parameters for the

interactions between CH3 and CH2 united atoms are

calculated by using the Lorentz–Berthelot mixing rules

and are reported in Table 1:

eCH3 –CH2
¼ ðeCH3

eCH2
Þ1=2sCH3 –CH2

¼
1

2
ðsCH3

þ sCH2
Þ ð2Þ

The bond potential between two bonded united atoms i and j

is described by a Morse oscillator [16,17]. This potential is

given by Eq. (3), where rij is the internuclear separation

between unit i and j; Re is the equilibrium distance between

the two units, D and a are constants given in Table 1

V2ðrijÞ ¼ D½1 2 expð2aðrij 2 ReÞÞ�
2 ð3Þ

The bond angle potential describing the interaction between

three consecutive bonded atom units is given by Eq. (4),

where uijk is the bending angle, and u0 is the equilibrium

angle. The constants K and u0 are given in Table 1

V3ðuijkÞ ¼ SWðrijÞSWðrjkÞ
K

2
ðcos uijk 2 cos u0Þ

2 ð4Þ

where SWðrijÞ and SWðrjkÞ are the switching functions

between united atoms ði; jÞ and ðj; kÞ; respectively.

The torsional potential function describes the inter-

actions arising from torsional forces in chain between four

consecutive united atoms. fijkl is the dihedral angle, A, B

and C are constants given in Table 1. This potential results

in a gauche– trans energy difference of 2.5 kJ mol21 and a

cis-barrier of 16.7 kJ mol21 [15]

V4ðfijklÞ ¼ SWðrijÞSWðrjkÞSWðrklÞSWðuijkÞSWðujklÞðA

2 B cos fijkl þ C cos3fijklÞ ð5Þ

where SWðuijkÞ and SWðujklÞ are the switching bending

functions between three consecutive atoms ði; j; kÞ and

ðj; k; lÞ; respectively.

Switching functions SWðrÞ and SWðuÞ depending on the

distance and the valence angle, respectively, are used in the

bond angle and torsional potentials to attenuate them to zero

when the corresponding bonds are extended and are

ultimately broken. Concerning SWðrÞ; different forms

exist, but we use the trigonometric function given by Eq. (6)

SWðrÞ ¼ 1:0 2 tanh½1:53131681 £ 1027ðr 2 ReÞðr

þ 4:669625Þ8� ð6Þ

In the V4ðfijklÞ potential, a term as ðsinuÞ21 is taking into

account in its derivative. So, when the angle u is close to p,

the potential becomes singular, and the corresponding force

is infinite. Thus, a bending switching function must be

added to the potential V4ðfijklÞ to make up for this

singularity. This function is given by Eq. (7)

SWðuÞ ¼ ð1 2 cos16uÞ4 ð7Þ

2.2. Simulation details

Our model consists of Nc polyethylene chains ðNc ¼ 72Þ

containing Na CH2 groups ðNa ¼ 100Þ oriented along z-axis.

The thickness of this initial configuration is approximately

12.6 nm. In the orthorhombic phase, two chains of

polyethylene make up the unit cell in which the parameters

a (0.74 nm), b (0.49 nm) and c (0.26 nm) are parallel to x; y

and z axes, respectively. Our system contains Nt ¼ 7200

atoms. A polyethylene crystal picture is shown in Fig. 1.

The dimensions of the crystal are Lx ¼ 4:8 nm, Ly ¼ 2:8 nm

and Lz ¼ 12:6 nm.

In addition, the two end units of the one hundred units

polyethylene chain are bonded to hypothetical infinite mass

fixed units. This arrangement is commonly referred as

nanospring [18]. We have chosen to restrain only the z-

direction to be able to study the destruction of the crystal

under particle collisions in a next work. The inclusion of

switching functions in the energetic potential functions has

been achieved with this aim.

2.3. Integration method

Most of the simulations of crystals use symplectic

integrators which are in fact particular algorithms for

generating approximate solutions of the Hamiltonian system

of ordinary differential equations. The equations of motion,

Hamilton’s equation, are given by

›pi

›t
¼ _pi ¼ 2

›H

›qi

;
›qi

›t
¼ _qi ¼

›H

›pi

ð8Þ

where ðqi; piÞ; i ¼ 1;…;Nt is a set of Nt canonically

conjugated coordinates and momenta, and H is the classical

Hamiltonian function.

Unlike many numerical methods for solving sets of

ordinary differential equations, symplectic integrators are

specifically tailored to Hamiltonian systems because they
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satisfy the symplectic property that exact solutions to Eq. (8)

must satisfy. This implies that approximate solutions

generated by the symplectic integrator preserve the Nt

Poincare integral invariants of the Hamiltonian system [19].

The Hamiltonian of the system is made up of a

kinetic contribution depending solely on the conjugated

momenta and of a potential contribution depending only

on the generalized coordinates. The integration of the

Hamiltonian system requires an explicit Runge–Kutta–

Nyström method using a symplectic integrator developed

by Calvo and Sanz-Serna (five stage, fourth order) [18].

The set of the integrator coefficients is given in Table 2.

The equation of motion are integrated using a time-step

of 2 fs. The simulation time is about 15 ps. The crystal needs

approximately 3 ps to reach its equilibrium state and the

acquisition time is 10 ps. The production phase where

thermodynamical and structural quantities are collected

consists of 500 configurations, each configuration being

saved at every 20 fs. Intermolecular and intramolecular

interactions have been computed using a large cutoff

rc ¼ 2 nm. The simulation has been performed in the

microcanonical NVE ensemble without applying any

periodic boundary conditions.

Initial condition settings consist in placing all units in

the crystal, in their equilibrium position; the distance

between two adjacent units is equal to Re, and u and f

angle values are set to minimize the potentials V3 and V4,

respectively. For conjugated momenta, random velocities

between ^Vmax; are computed according to the following

relationships

XNt

i¼1

pi ¼ 0;
XNt

i¼1

p2
i

2MCH2

¼
3

2
NtkBT ð9Þ

where Nt is the total number of units in the crystal, kB is

Boltzmann’s constant, and T is the temperature. In fact,

initial velocities have been selected randomly from a

Gaussian distribution by checking also that the sum over

all the momenta has been equal to zero. The simulations

have been run on Pentium Pro workstations and typically

required three weeks of CPU time.

3. Results and discussions

Fig. 2 presents the total energy of the system as a

function of time for two temperatures. The mean energy

values are also given in Table 3. This figure demonstrates

that the total energy of the system is well conserved with

deviations less than 0.1%. This result validates the time step

size and underlines the efficiency and the stability of the

Table 1

Force field parameters. Bonds, angle, torsional and van der Waals

parameters

Potential Parameters

V2ðrijÞ D ¼ 334:720 kJ=mol

Re ¼ 0:153 nm

a ¼ 19:9 nm21

V3ðuijkÞ K ¼ 130:220 kJ=mol

u0 ¼ 1:9540837 rad

V4ðfijklÞ A ¼ 8:370 kJ=mol

B ¼ 18:410 kJ=mol

C ¼ 26:780 kJ=mol

VLJðrijÞ sCH2
¼ 0:3980 nm sCH3

¼ 0:3980 nm

eCH2
¼ 477 J=mol eCH3

¼ 477 J=mol

Fig. 1. A schematic representation of (a) the unit cell, (b) the orthorhombic phase. A schematic diagram of the configuration of the polyethylene crystal is

displayed in (c) with 7200 united atoms.

Table 2

Integrator coefficients of the symplectic integrator

a½k� b½k�

a[1] ¼ 0.205177661542290 b[1] ¼ 0.061758858135626

a[2] ¼ 0.403021281604210 b[2] ¼ 0.338978026553640

a[3] ¼ 20.120920876338910 b[3] ¼ 0.614791307175580

a[4] ¼ 0.512721933192410 b[4] ¼ 20.140548014659370

a[5] ¼ 0.000000000000000 b[5] ¼ 0.125019822794530

E. Duffour, P. Malfreyt / Polymer 43 (2002) 6341–6349 6343



sympletic integrator used in our simulations from the energy

point of view. The trajectories of the temperature of the

system are shown in Fig. 3. These plots highlight that the

temperature stays constant throughout the simulation runs

within a deviation of about 1% (Table 3).

The components of the molecular temperature tensor are

calculated using the following expression

TabðzÞ ¼

XNc

i

HðziÞðviÞa·ðviÞb

XNc

i

HðziÞ

ð10Þ

where ðviÞa is the a component of the velocity of the centre

of mass of chain i and HðziÞ is a top-hat function

HðziÞ ¼
1 for z 2

Dz

2
, zi , z þ

Dz

2

0 otherwise

8><
>: ð11Þ

Fig. 4a shows the average temperature profile TðzÞ along the

z-direction. TðzÞ is defined as the trace of the temperature

tensor. We see that this component fluctuates about the

average value of the total temperature within the deviation

previously calculated. Actually, the mean value of TðzÞ

coincides exactly with the temperature computed from the

kinetic energy Eq. (9). Fig. 4b presents one off-diagonal

element of the pressure tensor TxzðzÞ as a function of the z-

axis. This component oscillates around zero with an average

value equal to 20.4 K and a standard deviation of 2.0 K. We

checked also that the remaining off-diagonal element of the

temperature tensor are close to zero across the box and that

the on-diagonal elements of the temperature are identical

within the statistical fluctuations both along a given

direction and in the three Cartesian directions. This is

indicative of the correct equipartition of the energy among

the translational degrees of freedom of the chains.

The element ab of the molecular pressure tensor is

defined in terms of the virial expression according to Eq.

(12)

pab ¼
1

V

XNc

i¼1

miðviÞaðviÞb þ
XNc21

i¼1

XNc

j.i

XNu

a¼1

XNu

b¼1

ðrijÞaðf iajbÞb

ð12Þ

where V is the volume of the system, mi and vi are the

Fig. 2. Instantaneous total energy E1 (T ¼ 217 K) and E2 (T ¼ 312 K) of

the crystal as of function of time at two temperatures.

Table 3

Average temperature T (K), the calculated pressure tensor components

resulted from the virial route (MPa), and the trace of the pressure tensor

(MPa)

Set 1 Set 2

T 2172 3122

pxx 17.5 31.7

pxy 0.08 20.63

pxz 20.28 20.06

pyy 27.62 28.00

pyx 0.10 20.59

pyz 20.80 0.13

pzz 1.17 1.67

pzx 0.02 0.03

pzy 20.01 0.05

p ¼ ð1=3Þðpxx þ pyy þ pzzÞ 2.51 6.82

Estretching 107.615 148.618

Ebending 64.611 95.419

Etorsion 2767.412 2731.814

Enon-bonded 213492 213023

Etotal 216742 214002

The average bond, bond angle, torsional and non-bonded energetic

contributions (kJ mol21) are reported. The total energy includes the kinetic

energy part. The subscript indicates the accuracy of the last decimal(s). The

number 2172 means 217 ^ 2 and 107.615 ¼ 107.6 ^ 15.

Fig. 3. Trajectories of the temperature of the crystal as a function of time for

the two studied temperatures.
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molecular mass and velocity of the centre of mass,

respectively, rij is the vector between the centre of mass

of chains i and j and

f iajb ¼ 2
riajb

riajb

dUðriajbÞ

driajb

ð13Þ

fiajb is the force between atom a in chain i and atom b in

chain j; riajb being the distance between atom a in chain i

and atom b in chain j: In addition, we compute the

components of the molecular pressure tensor as function of

the x and y directions using two different methods.

Fig. 5 plots the pressure of the system and its average as a

function of time. The pressure is calculated using Eq. (12)

and the time average components of the pressure tensor are

given in Table 3. As expected, the average pressure

converges to a stable value although the instantaneous

pressure fluctuates very much about the mean value within

11.6 MPa and with two extrema values of 220.5 and

30.6 MPa. Table 3 shows that the off-diagonal elements of

the molecular pressure tensor are close to zero as expected

for a system at mechanical equilibrium. We see that the on-

diagonal elements are not all equal but we can estimate the

hydrostatic pressure as p ¼ ðpxx þ pyy þ pzzÞ=3: The fact

that the on-diagonal elements are not equal can be due to

inappropriate parameters for the non-bonded potentials [5].

The absence of boundary periodic conditions can play a

significant role with the geometry of the crystal. A more

detailed analysis in the interior of the crystal along some

particular directions can be performed using the following

methods.

The Irving–Kirkwood [20,21] definition for a molecular

system leads to the following expression:

pabðyÞ ¼
1

V

X
i;ab

HðyiÞmiðviÞaðviÞb

þ
1

A

* XNc21

i¼1

XNc

j.i

XNu

a¼1

XNu

b¼1

ðrijÞa

� ðf iajbÞb
1

lyijl
u

 
y 2 yi

yij

!
u

 
yj 2 y

yij

!+
ð14Þ

In this equation, k· · ·l denotes an ensemble time average.

uððy 2 yiÞ=yijÞ is the unit step function which is equal to 1

when ððy 2 yiÞ=yijÞ . 0 and zero otherwise. The distance yij

is divided into slabs of width Dy and the chains i and j

contribute to the pressure tensor in a particular slab if the

line joining i and j; crosses, starts or finishes in the slab. The

contribution from i– j interaction is distributed uniformly

along the line joining the centre of mass of chains i and j:
In this study, we use also an additional statistical

mechanical technique [22,23], commonly referred as the

method of planes (MOP), for calculating the pressure tensor.

An alternative definition of the molecular pressure tensor is

given by

payðyÞ ¼
1

2A

XNc

i¼1

miðviÞa
d

dt
sgn½yi 2 y�

* +

þ
1

A

XNc21

i¼1

XNc

j.i

XNu

a¼1

XNu

b¼1

ðf iajbÞa½uðyi 2 yÞuðy 2 yjÞ

2 uðyj 2 yÞuðy 2 yiÞ� ð15Þ

if yi and yj are both either smaller or larger than y; the

contribution to the pressure tensor is zero. If yi , y and

yj . y then the first product of the Heaviside functions is

zero while the second is unity. If yi . y and yj , y then the

second is unity while the first is unity. The kinetic part of the

pressure tensor is due to the momentum flux across the plane

A: If a particle i crosses the plane during time interval

between t and t þ Dt; we use the sign of the y component of

the velocity to check whether the crossing is from right to

left or vice versa.

In a first time, we see that the pressures calculated from

the IK and the MOP methods match very well (Fig. 6)

validating both these methods for this type of study. We

check also that the off-diagonal elements along both x and y

directions oscillates around zero indicating that the system

is at mechanical equilibrium. We observe that the pxx

presents a plateau in the middle of the crystal. The

deviations from the plateau are located near the boundaries

and are due the absence of periodic boundary conditions.

Fig. 4. Temperature profiles along the z-direction (a) TðzÞ and (b) TxzðzÞ at

T ¼ 312 K. TðzÞ is defined as the trace of the temperature tensor. The

straight lines correspond to the average temperature along the z-axis with

error bars representing rms fluctuations.
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The average pxx pressure can be deduced from an average

of the values within the plateau and give a better knowledge

of the internal pressure than the values deduced from the

virial route. An average value of pxx along the x-direction

is 21:5 ^ 1:2 MPa at T ¼ 217 K and 37:0 ^ 4:6 MPa at

T ¼ 312 K. The weak standard deviations allow a good

estimation of the component of internal pressure inside the

crystal. It is interesting to note that the pyy component

along the y-axis presents a different profile with a smaller

plateau located in the negative pressures in agreement

with the values calculated from the virial formula within

the statistical uncertainty inherent in the calculation

of the pressure, ðpyy ¼ 23:8 ^ 0:3 MPa at T ¼ 217 K,

pyy ¼ 24:4 ^ 1:7 MPa at T ¼ 312 K). The absence of

periodic boundary conditions is also well noticeable on

the profile of this component close to the boundaries. We

see that the plateau has shrunk in the y-direction. This may

be explained by the smaller dimension of the crystal over

this direction. In this case, the absence of periodic boundary

conditions affects further the profiles of this pressure

component. The negative component pyy along the y-axis

denotes a certain tension in the coil which is consistent with

the comparison between the y–z and x–z projections of the

crystal in the simulations (Fig. 7). As the temperature

increases, we observe an increase in the pxx component of

the pressure tensor.

As concerns the stable structure resulted from our

simulations, we check that it is in orthorhombic phase.

The a, b and c parameters calculated from the centre of

masses of every chain at T ¼ 217 K over 10 ps are equal to

0:77 ^ 0:01; 0:46 ^ 0:01 and 0:25 ^ 0:01 Å, respectively.

The difference between the average and initial a and b

Fig. 5. Instantaneous pressure ð· · ·Þ and average pressure ð—Þ calculated

from the virial route Eq. (12) as a function of time for the polyethylene

crystal.

Fig. 6. Component pressure profiles calculated from the IK definition at T ¼ 217 K ðKÞ and T ¼ 312 K ðSÞ and from the MOP definition ð· · ·Þ for the two

temperatures. (a) pxxðxÞ; (b) pyyðxÞ; (c) pyyðyÞ; (d) pxxðyÞ: In (b) and (d) cases, the profiles calculated from the MOP definition are omitted for clarity.

E. Duffour, P. Malfreyt / Polymer 43 (2002) 6341–63496346



parameters may be explained by the fact that our crystal is

only restrained in the z-direction. We note a slight increase

with the temperature as it has already been shown in a

previous study [24]. The a; b and g parameters have been

determined from the scalar product over all the vectors

along y–z, x–z and x–y axes, respectively. We find a ¼

90:0 ^ 0:48; b ¼ 90:0 ^ 0:18 and g ¼ 90:2 ^ 0:58: Such

agreement between initial and mean lattice parameters has

already been obtained with simulations of constrained

crystals [4]. The calculations of the lattice parameters

clearly show that the steady state structure from our

simulations using the UA potential is the orthorhombic

phase and not the hexagonal phase.

The analysis of the ðy–zÞ; ðx–zÞ and ðx–yÞ projections

show that the crystal maintains its solid structure during the

simulation. As a consequence, the analytical form of the

potential used are efficient to constrain the united sites to

their equilibrium positions. The increase in temperature has

no influence on the structure of the crystal. Obviously, we

observe a slight increase in the binding, bending and

torsional energetic contributions whereas the change in the

non-bonded interactions are less marked as shown in Table

3. These characteristics suggest that the structure did not

vary with the range of temperature studied here. Further

insights into the local environment can be obtained with the

plots of the intramolecular and intermolecular radial

distribution functions.

An important property is the pair correlation function

gðrÞ which describes the local structure and can be

calculated by the operational definition

gðrÞ ¼ nðrÞ=4p2Dr ð16Þ

where nðrÞ is the mean number of pairs having separations

between r and r þ Dr; and r is the number of atoms divided

by the volume of the simulation cell. The intra- and

intermolecular radial distributions functions for CH2–CH2

interactions are displayed in Fig. 8. The large narrow peak

in the intramolecular radial gCH2 –CH2
distribution function is

due to the C–C covalent bonds at 1.53 Å. The successive

peaks correspond to CH2 united atoms separated by two,

three, four or more bonds, respectively. This curve shows

that the inner structure of the polyethylene chain is well

conserved during the simulations. The intermolecular radial

gCH2 –CH2
exhibits a first well-pronounced peak correspond-

ing to the nearest-neighbour intermolecular structure at

about 4.9 Å. This distance is in fact the value of b unit cell.

The second peak occurs at 8.8 Å and reflects the atoms

located at the distances 2b (2 £ 4.9) and at the diagonal of a

and b; i.e. 8.8 Å, a and b being the unit cells already defined.

In the second peak, there is also a smaller shoulder near

r ¼ 8:8 Å corresponding to the distance a (7.4 Å). Is also

displayed the intermolecular radial distribution for

T ¼ 312 K. We can check that the two distributions are

very close with a decrease of the shoulder for the second

peak for the higher temperature. We pinpoint that the

Fig. 7. Average x–y (a), x–z (b) and y–z (c) projections of the crystal

during 1.5 ps in the simulations at T ¼ 217 K.
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intermolecular distribution function do not tend to 1 due to

the absence of periodic boundary conditions in the

simulated system. These correlation functions confirm that

the crystal is fully ordered for the two temperatures, in

agreement with energetic values listed in Table 3.

4. Conclusions

We have developed a molecular dynamics algorithm in

conjunction with a particular sympletic integrator capable of

yielding coherent results concerning the thermodynamic

parameters T and p and internal structure of the poly-

ethylene crystal. In this paper, we have intentionally omitted

the periodic boundary conditions. In doing so, we plan to

study the bombardment of polyethylene by different

molecules.

In a first step, we have shown that the sympletic

integrator used in this study is efficient with a good

conservation of the temperature and of the total energy of

the system. In addition we have checked the thermal and

mechanical equilibrium of our system by calculating

temperature and pressure tensors. We have seen that the

component presented different profiles as a function of

the axes. The fact that all the on-diagonal elements of the

pressure tensor are not equal may be due to unappropriated

parameters in the non-bonded interaction parameters and to

numerous geometric constraints. Actually, the Lennard-

Jones parameters have been adjusted to reproduce thermo-

dynamic properties in the liquid and vapour phases as

enthalpies of vaporization, liquid or vapour densities. These

LJ parameters have not been adjusted for the solid state.

This type of problem has been already mentioned in a

previous study [5]. The development of new non-bonded

interaction parameters or the use of new analytical

potentials for the study of solid structure is far from being

completed. Anyway, the calculation of the pressure tensor

different profiles along different directions represents a pre-

requisite before the study of bombardment of polyethylene.

In addition, these simulations reveal that the two different

method (IK) and (MOP) for the calculation of the pressure

tensor give similar profiles in our crystal and represent two

efficient algorithms for the computation of the pressure in a

solid state.

The analysis of the intra- and interradial distribution

functions has allowed to assign all the peaks by checking

that the order inside the crystal is maintained for the two

temperatures studied here.

These simulations establish our MD algorithm as a

sensible tool to study the equilibrium properties of

polyethylene crystal. It will be possible to perform

molecular dynamics simulations of particle impacts on

polyethylene crystal and to use the two algorithms of

pressure computations in these studies.
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